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Interaction of BRCAI and p27*"" pathway in breast cancer
PI: James O’Kelly

Award Number. DAMD17-02-1-0337

Summary: Families with inherited breast and ovarian cancers frequently have mutations of the breast cancer
susceptibility gene BRCA1. The BRCAI gene encodes a 220 kDa nuclear protein whose precise biochemical
function remains unclear, although multiple functions have been suggested. These include DNA repair, growth
inhibition and as a transcription factor. Cell cycle progression is governed by a family of cyclin-dependent
kinases (CDKs), whose activity is regulated by phosphorylation, activated by cyclin binding and inhibited by
various inhibitors (CDKISs), such as p21W*/CP! and p27°"", It has been shown that p275*' protein decreases
during tumor development and progression in breast, colon, prostate and ovarian cancers. Previously we
observed a correlation between the expression of BRCA1 and p27%"" in a series of breast cancer cell lines. In
this study, we have analyzed the p27%"' promoter in order to determine if this CDKI is transcriptionally
activated by BRCAI1 and to elucidate the elements important for this activity. We determined that the BRCA1-
responsive element of the p27°""' promoter was localized to a 35 bp region at positions -545 to -511. BRCAI
has been shown to interact with a wide variety of proteins but we were unable to show that any of these were
involved with BRCAI and the regulation of p27K‘p1. Therefore, we further analyzed the DNA sequence of the
35 bp BRCAl-responsive element of the p27°"' promoter. We identified a FOXA1 binding site within the
BRCA1-responsive element of the p27Kipl promoter and showed that FOXA1 activated the promoter alone
and in conjunction with BRCA1 and that these two proteins interacted in vivo.

Results:

BRCAL1 can transactivate expression of p27 Kipl, Using transient transfections we examined the effect of
BRCA1 on both mouse and human p27*'*' promoter reporter gene expression in Cos, MCF-7 breast cancer and
HCT116 colon cancer cells (Figure 1a, b). pCR3-BRCA1 activated the mouse p27<"' promoter by 10-fold in
Cos cells and 5-fold in MCF-7 and HCT116 cells (Figure 1b), as compared to the pCR3 vector. The specificity
of p27Kip1 induction by BRCA1 was determined using various synthetic and tumor associated BRCA1
mutants. Four different tumor-associated BRCA1 Mutants and BRCA1 mutant (del-500-1863) were unable to
significantly transactivate the p27Kip1 promoter reporter compared to wild-type BRCA1 (Figure 2a, b).
However, a second mutant lacking only the RADS51-interacting domain but with a functional nuclear
localization signal and C-terminal transactivation domain, BRCAI1 (del 515-1091), was able to transactivate the
p27 promoter nearly as efficiently as wild type BRCA1 (Figure 2b).

Identification of the BRCAI1 response element in the promoter region of p27"i"1. Experiments were carried
out using deletion mutants of the mouse p27%"*! promoter. Deletion up to position -774 increased the activity of
BRCAL on the p275?! promoter reporter constructs (Figure 4a), which is consistent with a previous report
showing that the mouse p27°'"' promoter contains negative regulatory elements in the region -1609 to -925.
Further deletion to -615 did not significantly decrease the response of the p27<'*' promoter to BRCA1 (Figure
4a). However, BRCALI responsiveness was lost by deletions up to position -511. These results suggested that a
putative BRCA1-responsive element was located between positions -615 and -511 of the p27""! promoter. To
determine whether BRCA1 binds directly to the p275'' promoter we performed EMSA analysis using
oligonucleotides spanning the region of the mouse promoter containing the putative BRCA1-responsive
element. Nuclear extract from MCF7 produced a slowly migrating band with oligo C but did not show any
significant binding to oligo A or oligo B (Figure 4b). The slowly migrating complex observed with MCF7
nuclear extract and oligo C could be competed by a 10-fold excess of cold oligo C and an antibody against
BRCAL resulted in a supershifting of the complex (Figure 4b). Therefore it appears that the BRCA1-responsive
element is located at position -545 to -511 of the mouse p27°"! promoter, which corresponds to -714 to -680 of
the human p27%""! promoter.



p27K.i"l is regulated by breast cancer susceptibility gene 2 (BRCA2): We performed deletion analysis of the
p27%"! promoter in transient transfection assays suggests that BRCA2-responsiveness is in the region —988 to —
925 (Figure 5). We are currently making constructs to delete this region from the full-length promoter. Possible
further experiments are gel shift/EMSA analysis to demonstrate BRCA2 binding and identification of other co-
factors which may be involved with BRCA2.

FOXALI activates the p27~'"' promoter: Analysis using a number of transcription factor data bases suggested
that the region -544 to -536 corresponded to a binding site for the transcription factor FOXA1, a member of the
forkhead family of transcription factors. BRCALI alone activated the p27%""! promoter 12-14-fold (Figure 6A),
FOXA1 alone activated the p27°"' promoter up to 75-fold and a combination of FOXA1 and BRCA1 appeared
to be synergistic in activating the p275"' promoter (Figure 6A). Mutation of the potential FOXA1 DNA-binding
site in the p27°'"' promoter decreased the activation by FOXALI either alone or in combination with BRCA1
(Figure 6B). Therefore, these results suggest that FOXA1 can strongly activate the p27°""! promoter, and this
activity is increased dramatically in the presence of BRCA1. Only wild-type BRCA1 and the transcriptionally
active mutant, BRCA1del515-1091, were able to synergize with FOXA1 on the p27%'"' promoter (Figure 6C).

FOXAL1 binds to the p27%"" promoter: In order to show that FOXAT1 can bind the p27%"®! promoter, we
carried out EMSA analysis . We observed a protein-DNA complex in MCF-7 extracts that we had previously
determined expressed FOXA1 protein (Figure 7) Confirmation that FOXA1 was present in this complex came
when a FOXA1 antibody was included in the binding reaction, causing a supershift of the protein-DNA
complex (Figure 7, lane 11). Therefore, these results show that FOXAL1 is capable of binding an element in the
p27°®! promoter and directly activating this promoter.

FOXAL1 protein expression is enhanced by co-expression with BRCA1: Analysis of the nuclear extracts
from transiently transfected cells showed that when FOXA1 was co-transfected with BRCAL1, greater
expression of FOXA1 protein occurred compared to cells transfected with FOXAT1 alone (Figure 8a, b). We
determined that in cells transiently transfected with FOXAT1 alone, the half-life of the FOXA1 protein was
approximately 8 hours (Figure 8a). By comparison, the half-life of the FOXA1 protein co-transfected with
BRCA1 was greater than 24 hours (Figure 8b). Therefore this result suggests that expression of BRCA1 may
indeed stabilize FOXA1 protein.

9: FOXA1 and BRCAL proteins interact in vivo. Since the data suggested that BRCA1 could stabilize
FOXAL protein, we hypothesized that this was due to a physical interaction between these two proteins in vivo.
Immunoprecipitation of nuclear lysates with a BRCA1 antibody and subsequent probing with an antibody
against FOXA1 indicated that in vivo BRCA1 and FOXAI were in a protein complex together in these two
breast cancer cell lines (Figure 9).

Conclusions: Recent studies have shown that decreased expression of p27Kip1 correlates either with both the
presence of a BRCA1 mutation in breast tumor tissue as well as with BRCA1 promoter methylation. Thus, loss
of functional BRCA1 might be expected to result in impaired growth inhibition due to ineffective regulation of
p27Kipl. Therefore, understanding the mechanisms controlling p27Kip1 expression in breast tumors may
provide new strategies to inhibit tumor growth. We have identified FOXAL as a binding partner for BRCA1,
that both can regulate the expression of p27<"! alone or in concert with BRCA1 and that BRCAL1 stabilizes
FOXALI protein.

Reportable Outcomes: BRCAI Transactivates the cyclin dependent kinase inhibitor p27°"!, Oncogene (2002)
21, 3199-3206.
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BRCAL1 transactivates the cyclin-dependent kinase inhibitor p27%¥!

Elizabeth A Williamson*!, Farnaz Dadmanesh? and H Phillip Koeffler’

! Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, 8700 Beverly Bivd., Los Angeles, California,
CA 90048, USA; *Department of Anatomic Pathology, Cedars-Sinai Medical Center, UCLA School of Medicine, 8700 Beverly

Blvd., Los Angeles, California, CA 90048, USA

The p27¥*' is a member of the universal cyclin-dependent
kinase inhibitor family. Previously, immunochemical
analysis of a series of breast cancer cell lines
demonstrated a correlation between the expression of
p27%*" and the breast cancer susceptibility gene BRCAL.
BRCA1 has a number of activities including DNA
repair, growth inhibition and as a transcription factor.
Here we demonstrate that BRCAI transactivates
expression of p27%*', This transactivation is dependent
on the presence of a functional C-terminal transactiva-
tion domain. Promoter-deletion analysis identified the
presence of a putative BRCAl-responsive element
located at position —615 to —511 of the p27%
promoter. These results suggest that the transcriptional
regulation of p27¥*' by BRCA1 may be a mechanism for
BRCAT1- induced growth inhibition.

Oncogene (2002) 21, 3199-3206. DOI: 10.1038/sj/
onc/1205461

Keywords: BRCA1; p27%!; transcriptional regulation

Introduction

Families with inherited breast and ovarian cancers
frequently have mutations of the breast cancer
susceptibility gene BRCA1 (Futreal et al.,, 1994). The
BRCALI gene encodes a 220 kDa nuclear protein whose
precise biochemical function remains unclear, although
multiple functions have been suggested. These include
DNA repair, growth inhibition and as a transcription
factor (Aprelikova et al., 1999; Chapman and Verma,
1996; Chen et al., 1999; Haile and Parvin, 1999).
BRCA1 does not share any significant homology to
any known proteins. However it does contain several
well-defined functional domains: an N-terminal RING
finger domain important for protein—protein interac-
tions, including BARD1 and ATF1 (Houvras et al.,
2000; Wu et al.,, 1996); a domain in the middle of
BRCA1 associates with the DNA repair protein

*Correspondence: EA Williamson, Department of Medicine-
Hematology/Oncology, Davis Rescarch Building, Room 5016,
Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA
90048, USA; E-mail: williamsone@cshs.org

Received 2 August 2001; revised 15 November 2001; accepted 26
November 2001

RADS1 (Scully et al., 1997); and the C-terminal
contains two repeats of the BRCT domains. These
BRCT domains appear to be involved in many of the
functions ascribed to BRCAL.

Various studies have suggested a role for BRCAI in
the transcriptional activation of specific genes. Over-
expression of wild-type BRCAI, but not tumor-derived
mutants, results in a G1 cell cycle arrest mediated via
the transcriptional activation of p21W#"/C€®! jn a p53-
independent manner (Somasundaram et al., 1997).
However, BRCA1 has also been shown to co-activate
the transcription of p53-regulated genes (Jin et al,
2000; Ouchi et al., 1998; Zhang et al., 1998). These
studies demonstrated that the C-terminus of BRCAL is
required for its function as a transcriptional activator.
Two transactivation domains have been identified in
the C-terminus; one localized to amino acids 1560—
1863 including the BRCT domain; and more recently, a
second transactivation domain was mapped to amino
acids 1293-1558 (Chapman and Verma, 1996; Hu et
al., 2000). Most cancer-predisposing mutations of
BRCALI results in gross truncation of the protein, thus
disrupting the C-terminal transactivation domain and
compromising this function of BRCAI.

Although BRCA1 has been shown to inhibit cell
cycle progression via activation of p21Waf1/CiPl this may
not be the only mechanism growth inhibition by
BRCAL.

Cell cycle progression is governed by a family of
cyclin-dependent kinases, whose activity is regulated by
phosphorylation, activated by cyclin binding and
inhibited by various inhibitors, such as p2]Wal/Cir!
and p27%®' (Sherr, 1994; Sherr and Roberts, 1999).
The p27%®" was demonstrated to bind to cyclin E-ckd2
complexes and inhibit the kinase function of cdk2
(Polyak et al., 1994). A number of other functions have
been suggested for p27%"' including as a promoter of
apoptosis, as a regulator of drug resistance in solid
tumors and having a role in cell differentiation
(Katayose et al., 1997; St. Croix et al., 1996; Durana
et al., 1997, Onishi and Hruska, 1997). A number of
studies have also examined p27%P' expression in a
series of tumors to determine if there is any diagnostic
or prognostic significance. It has been shown that
p27%"®! protein decreases during tumor development
and progression in breast, colon, prostate and ovarian
cancers (Catzevalos et al, 1997; Ciaparrone et al.,
1998; Cordon-Cardo et al., 1998; Masciullo et al.,
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1999). The demonstration that even a heterozygous
reduction of p27%®! leads to spontaneous and radia-
tion-induced tumors in mice further suggests that
p27¥i*! may play an important role in neoplastic
progression (Fero et al., 1998).

Previously we observed a correlation between the
expression of BRCA1 and p27%"®! in a series of breast
cancer cell lines (Elstner et al., 2002). In this study, we
have analysed the p27%®' promoter in order to
determine if this cyclin-dependent kinase inhibitor
(CDKI) is transcriptionally activated by BRCA1 and
the elements important for this activity.

Results

Transcriptional activation of the p27%7" promoter

By transient transfections we examined the effect of
BRCAI1 on both mouse and human p27%®! promoter
reporter gene expression in COS, MCF7 breast cancer
and HCT116 colon cancer cells (Figure 1a,b). pCR3-
BRCA1 activated the mouse p27%®' promoter by 10-
fold in COS cells and fivefold in MCF7 and HCT116
cells (Figure 1b), as compared to the pCR3 vector.
Similar fold activation was also observed for the
human p27%?! promoter in these cell lines (data not
shown).
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Figure 1 BRCALI transactivates the mouse p27X'P! promoter. (a)
Schematic representation of the p27%'®' promoter luciferase
promoter. The 3’ boundary is 178 bp downstream of the
translation start sitc. (b) COS, MCF7 and HCT116 were co-
transfected with p27ptr-luc and either pCR3 or pCR3-BRCALI
and luciferasc activity was measured 48 h later. These results
represent three independent experiments. Results arc shown as
RLU which is the ratio of the luciferase units obscrved for the
promoter construct compared to that scen for the pRL-SV40
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BRCALI is frequently mutated in hereditary breast
and ovarian cancer. The consequence of these
mutations is the generation of a truncated protein
which is either non-functional or unstable. Therefore
to investigate further the specificity of p27%*' induc-
tion by BRCAl we studied the effect of various
synthetic and tumor-associated BRCA1 mutants on
p27¥"®! promoter reporter gene expression (Figure 2a).
In these reporter assays four different tumor-associated
BRCA1 mutants and a synthetic BRCA1 mutant (del
500-1863) were unable significantly to transactivate
the p27%"' promoter reporter compared to the wild-
type BRCA1 (Figure 2b). However, a second synthetic
mutant lacking only the RADSI-interacting domain
but with a functional nuclear localization signal and C-
terminal transactivation domain, BRCA1 (del 515-

1091), was able to transactivate the p27%"®!' promoter

nearly as efficiently as the wild-type BRCA1 (Figure
2b).

We next investigated the possible mechanism for
regulation of p27¥"®' by BRCAL. It has been shown in
other studies that the regulation of expression of
p27%"*! is primarily via post-translational mechanisms.

Western immunoblot analysis of HCT116 cells
demonstrated that endogenous p27¥"®' protein expres-
sion was up-regulated by wild-type BRCA1 but not by
either the control vector pCR3 or a mutated BRCAl
(GIn1756insC) (Figure 3a). Wild-type and mutant
forms of BRCA1 were expressed at similar levels
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Figure 2 BRCAI mutants lacking the C-terminal transactivation
domain are defective for activation of p27%"P!. (a) Schematic
representation of the BRCA1 mutants indicating the important
domains for BRCA1 function. The arrows indicate the position of
the C-terminal mutations of the BRCA1 gene. (b) COS cells were
co-transfected with p27ptr-luc and pCR3 or either wild-type or
mutant pCR3-BRCA1 expression plasmids as indicated. Lucifer-
asc activity was measured 48 h post-transfection as in Figure 1.
These results represent two independent experiments
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Figure 3 BRCALI transcriptionally rcgulates p27%"P! expression.
(a) HCT116 colon cancer cells were transfected with pCR3,
pCR3-BRCAl or pCR3-BRCAI(GIn1756insC). Proteins were
harvested 48 h post-transfection and analyscd by SDS-PAGE
and Western blot. Expression of endogenous p27%®! protein in
up-rcgulated only in the presence of wild-type BRCAL. Equal
protcin loading is demonstrated by re-probing the blot with an
antibody against GAPDH. (b) HCT116 cells were transfected as
in (a) and RNA harvested by Trizol 48 h post-transfection.
Reverse transcription-PCR demonstrated that both wild-type and
mutant BRCA1 werc being expressed. Expression of p27<°' was
observed only in the cells transfected with wild-type BRCAL
Equality between samples was shown by using primers for
GAPDH

(Figure 3a). Thus BRCA1 does up-regulate p27%P!
protein expression.

To determine the mechanism for this up-regulation
(transcriptional versus post-translational) we isolated
RNA from cells transiently transfected with control
vector, wild-type BRCA1 or mutated BRCAIl and
proceeded with reverse transcription-PCR. PCR for
BRCALI used primers for exons 14 and 15 so that both
wild-type and mutant BRCA1 could be detected. At 25
cycles a PCR product for both BRCAI1 constructs was
observed (Figure 3b). However, at 30 cycles a PCR
product for p27%®! was detected only in the cells
transfected with wild-type BRCA1 (Figure 3b). By 35
cycles the p27¥®!' PCR product was equivalent in all
samples (data not shown). Thus these results suggest
that the regulation of p27¥"®! by BRCAL1 is transcrip-
tional.

Identification of a putative BRCAl-responsive element in
the p27%%! promoter

These results suggested that the p27%®' promoter
contained a putative BRCAI- responsive element.
Initial experiments were carried out using deletion
mutants of the mouse p27%®! promoter. Deletion up to
position —774 increased the activity of BRCA1 on the
p27%®! promoter reporter constructs (Figure 4a), which
is consistent with a previous report showing that the
mouse p27%?' promoter contains negative regulatory
elements in the region —1609 to —925 (Kwon et al.,
1996). Further deletion to —615 did not significantly
decrease the response of the p27%"®' promoter to
BRCAI1 (Figure 4a). However, BRCALI responsiveness
was lost by deletions up to position —511. These
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results suggested that a putative BRCAIl-responsive
element was located between positions —615 and
—511 of the p27%i®! promoter.

BLAST analysis determined that this region of the
mouse p27%P!' promoter (—774 to the translation start
site) was 94% identical to this region of the human
p27¥®! promoter, which starts at position —943.
Subsequent transient transfection assays with deletion
mutants of the human p27%i! promoter demonstrated
that the putative BRCAl-responsive element identified
in the mouse p27%®! promoter was located to the same
region of the human p27¥"®! promoter, position —784
to —680 (data not shown). .

These results in conjunction with the immunoblot
analysis of the breast cancer cell lines suggest that the
effect of BRCA1 on p27X"®' is p53-independent. The
correlation of BRCA1 and p27%®! protein expression
was observed in breast cancer cell lines expressing
either wild-type p53 (MCF7) or mutant p53 (MDA-
MB-231, T-47D). Also the putative p53 elements in the
p27¥®!' promoter are 5 to position —774, the p27¥®!
promoter deletion construct having the greatest
induction by co-transfection with BRCA1 (Figure 4b).

However these results do not determine whether
p27%"®! activation by BRCA1 is a direct or indirect
effect by BRCALI. To investigate the effect of BRCA1
on the p27%! promoter we generated oligonucleotides
spanning the region of the mouse promoter containing
the putative BRCAIl-responsive element as identified
by the promoter deletion analysis. These oligonucleo-
tides (oligo A —609 to — 575, oligo B —577 to —543,
oligo C —545 to —511) were used in EMSA with
nuclear lysates from two breast cancer cell lines MCF7
and HCCI1937, a breast cancer cell line which is
unizygous for the BRCA1 5382insC mutation, resulting
in termination of BRCA1 protein translation at codon
1829 (Tomlinson et al., 1998). Nuclear extract from
MCF7 produced a slowly migrating band with oligo C
but did not show any significant binding to oligo A or
oligo B (Figure 4b). In contrast, nuclear extract from
HCC1937 did not produce a band shift with any of the
oligonucleotides (Figure 4b and data not shown).
Subsequently we determined by immunohistochemistry
that HCC1937 did express BRCAI1 protein (Figure 5b).

The slowly migrating complex observed with MCF7
nuclear extract and oligo C could be competed 90% by
a 10-fold excess of cold oligo C (Figure 4b). Some
competition was observed with cold oligo A but there
was no competition observed with an excess of an
unrelated oligo (oligo U; STAT site from MUCI
promoter). This suggests that the DNA-protein com-
plex is specific.

BRCALI has been shown to interact with a number
of other proteins. We used a number of antibodies in
the EMSAs to determine the proteins involved in the
slowly migrating complex. Of all the antibodies tested,
only an antibody against exon 11 of BRCAI resulted
in a supershifting of the complex (Figure 4b). The
antibody against the C-terminus of BRCA1 decreased
the protein-DNA complex by 40—-50%, suggesting that
this antibody might interfere with BRCA1 binding to
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Figure 4 Region of mouse p27X™®' promoter containing the putative BRCAl-responsive element identificd by 5’ deletion mapping.
(a) COS cclls were co-transfected with the §'-deletion p27%*' promoter reporter constructs and cither pCR3 or pCR3-BRCALI, and
luciferase activity was mcasurcd 48 h later. Thesc results represent three independent experiments. (b) Nuclear lysate from MCF7
was incubated with oligo A (—609 to —575), oligo B (—577 to —543) and oligo C (—545 to —511) of the p27%'®' promoter.
Nuclear lysate from HCC1937 and HCC-BRCA1 was incubated with oligo C. Cold competition was carried out with an excess of
oligo C, oligo A or oligo U (an unrelated 35 bp sequence). The complex is supcrshifted by an antibody against exon 11 of BRCAL.
(¢) MCF7 cells were transfected with a S'-deletion p27%'"! promoter construct (—774) or with the construct minus the putative
BRCA I-responsive clement (—774 (del 545-511)). Luciferase activity was measured as in Figure 1. These results represent three
independent experiments
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Figure 5 Expression of p27%"®! is decreased in cells expressing mutated BRCAL. (a) () Formalin-fixed paraffin-embedded MCEF7.
(b) (d) Formalin-fixed paraffin-embcdded HCC1937. (a) (b) N-terminal anti-BRCA1 (Calbiochem). (¢) (d) Anti-p27¥iP!
(Transduction Labs). (a) (b) arc 4 x magnification. (¢) (d) arc 10 x magnification

the DNA (data not shown). Together these results
suggest that BRCA1 is interacting directly with the
DNA sequence from the p27%"?' promoter.

Since nuclear extract from the mutant BRCA1 cell
line HCC1937 did not bind the DNA sequence from
the p27%®' promoter, we re-introduced wild-type
BRCAL into this cell line (HCC-BRCAI) and repeated
the EMSA analysis. In this experiment a slowly
migrating complex was observed with oligo C and
nuclear extract from HCC-BRCAI1 (Figure 4b). This
slowly migrating complex with HCC-BRCA1 was less
than that observed for MCF7 but the level of
expression of wild-type BRCA1 in HCC-BRCAI1 was
lower than that observed for MCF7 (data not shown).
Thus introduction of wild-type BRCA1 did restore
binding to the p27¥?' promoter sequence.

Since it appeared that the BRCAIl-responsive
element could be localized to a 35 bp region of the
p27%i*! promoter, we generated a construct in which
this region was deleted. Transient transfection assays
using the deletion construct —774 and the construct
without the putative BRCAl-responsive element —774
(del 545-511) demonstrated that the removal of this
35 bp region decreased BRCA1 responsiveness of the
p27%®! promoter by 80% (Figure 4c). Therefore it does
appear that the BRCAl-responsive element is located
at position —545 to —511 of the mouse p27¥P!
promoter, which corresponds to —714 to —680 of
the human p27%"' promoter. This region is 100%
identical between the mouse and human promoter.

Previous deletion analysis of the human p27KiP!
promoter suggested that a region from —774 to
—435 contained the essential transcription factor
binding sites (Minami et al., 1997).

Decreased p27%X7! protein expression in mutant
BRCAI-expressing breast cancer cell line

Since wild-type BRCAL increases p27%i®! protein levels
in contrast to the tumor-associated BRCA1 mutants,
we decided to compare the endogenous p27%¥! protein
levels in cells expressing wild-type BRCA1 (MCF7)
versus mutated BRCA1 (HCC1937). Immunohisto-
chemistry demonstrated reactivity of both MCF7 and
HCC1937 with an N-terminal BRCA1l antibody
(Figure 5a,b). As expected from our transfection assay
results immunoreactivity for p27%®! was weak for the
HCC1937 cell line, as compared to MCF7 which
showed strong expression of p27%®' protein (Figure
5¢,d).

Discussion

It has previously been demonstrated that BRCAI can
transcriptionally upregulate p21%afl/Ce! and GADDA45
(Somasundaram et al., 1997; Jin et al., 2000). This
study demonstrates another target for BRCAI tran-
scriptional activation, namely the CDI p27¥®!, Wild-
type BRCALI transactivated the p27%®' promoter in a
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number of cell lines. However, tumor-associated
BRCA1l mutants were defective in transcriptionally
regulating p27¥®' indicating that a functional C-
terminal transactivation domain of BRCA1 is required
for modulating p27%®'. This study suggests that
another mechanism for growth inhibition by BRCA1
may be mediated via the upregulation of p27%/*'.

BRCAI contains two BRCT motifs within the C-
terminal transactivation domain and these BRCT
regions are also found in several proteins involved in
DNA repair and cell cycle checkpoints. (Koonin et al.,
1996; Callebaut and Mornon, 1997). These BRCT
motifs have been shown to bind DNA in a sequence
specific manner (Halligan et al., 1995; Yamane ef al.,
2000). The results shown here suggest that the mutated
BRCAL1 in HCC1937 cells is not able to bind DNA
because the mutation results in a truncated protein
lacking intact BRCT domains. Furthermore, an anti-
body against the C-terminus of BRCAI1 decreased the
slowly migrating complex observed with the MCF7
nuclear extract by 40—50%. Thus, these results suggest
that the tumor-derived BRCA1 mutations may not be
able to efficiently transactivate gene transcription due
to an inability to bind DNA.

The region of the p27%P®' promoter containing a
putative BRCA1 responsive element was mapped to
positions —545 to —511 of the mouse or positions
—714 to —680 of the human p27%*' promoter. A
comparison of this region to those identified as being
important for BRCAI regulation of the p21Wefl/Cip!
promoter (—143 to —93) and the GADD45 promoter
(=121 to —75) did not demonstrate any homology
between these promoters regarding the identified
BRCAl-responsive elements. However, gel mobility
shift analysis did demonstrate that all three promoter
regions could bind BRCAI, that the complex could be
supershifted by an antibody against BRCAI, and that
binding to one promoter region could be competed by
an excess of the other promoter regions (Williamson,
unpublished results). These studies together suggest
that BRCA1 might have different target motifs for
activation. It has been suggested that another p21W#f/Cip!
promoter motif, the STAT binding serum-inducible
element can be activated in response to BRCA1 (Ouchi
et al., 1998). Thus the choice of motifs for activation
by BRCA1l may vary according to the presence of
transcription factors in different cell types, as well as
other signaling events within the cell.

The p27X®! is decreased in various human cancers
but specific mutations have only rarely been reported
(Spirin et al., 1996). Transcriptional, translational and
post-translatlonal mechanisms contribute to p27K'P‘
regulation. It had been considered that the major
mechanism for regulating p27%"®' at the protein level
was post-translational. However, transcriptional upre-
gulation of p27%®' by the Forkhead transcription
factors has been reported recently (Medema er al.,
2000). For breast tumors, this decrease in p27%P!
expression might be a reflection of a loss of functional
BRCAI, resulting either from a mutation in the
BRCA1 gene or by methylation of the BRCAI
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promoter. Recent studies have shown that decreased
expression of p27%iP' does indeed correlate either with
both the presence of a BRCA1l mutation in breast
tumor tissue as well as with BRCAIl promoter
methylation (Chappuis et al., 2000; Niwa et al.,
2000). Thus, loss of functional BRCAl might be
expected to result in impaired growth inhibition due
to ineffective regulation of p27%®!. Therefore, under-
standing the mechanisms controlling p27%®! expression
in breast tumors may provide new strategies to inhibit
tumor growth.

Materials and methods

Plasmid constructs

The promoter region of p27%"P! and the enzyme generated 5’
deletions were subcloned into pGL2-basic as previously
described (Kwon et al., 1996; Mmaml et al., 1997). These
were provided by J Wyke The p27%i®! promoter construct
—774 (del 545-511) was generated by two rounds of PCR
and subcloned into the Hindll/Sacl site of the pGL2 vector.
Removal of the 35 bp was confirmed by sequencing. The
pCR3 vectors encoding wild-type BRCA1 and the synthetic
and tumor-associated mutants of BRCA1 were constructed as
previously described and prov1ded by B Weber (Somasundar-
am et al., 1997). The Zn**-inducible BRCA1 was generously
provided by J Holt (Abbott et al., 1999).

Cells, transfections and luciferase assays

All cell lines were obtained from ATCC. COS, MCF7 and
HCTI116 were transfected using 1 ug of each expression
plasmid by Geneporter according to the manufacturer’s
instructions (Gene Therapy Systems). Lysates were harvested
48 h post-transfection and luciferase assays carried out
according to the manufacturer’s protocol (Promega). Trans-
fection efficiency was normalized using pRL-SV40 at 1/10 of

total DNA concentration.

Generation of stably transfected HCC1937 cells

Full-length BRCA1 was ligated mto the Norl/HindIll of the
PMT vector, which contains a Zn?*-inducible promoter and
the neomycin resistance gene (Abbott er al., 1999). HCC1937
was transfected with 1 ug of pMT-BRCAL. Cells were then
selected in 50 pug/ml G418 (Sigma) for 4 weeks. Five cell lines
were generated and analysed for expression by Western
blotting.

Reverse transcription and PCR

HCT116 cells were transiently transfected with either pCR3,
pCR3-BRCAL1 or pCR3-BRCAI1 (GIn1756insC). After 48 h
the cells were harvested for RNA using Trizo! according to
the manufacturer’s instructions (Invitrogen). 2.5 ug total
RNA was used for reverse transcrlptlon followed by 1/50
of the reverse transcription reaction being used for PCR.
PCR for BRCAl and p27¥P' was as follows: BRCAI
primers (FOR 5-GATTTGACGGAAACATCTTAC and
REV §'- CCAGCAGTATCAGTAGTATGA) spanmng exons
14 and 15 resulting in a 236 bp product; p27%"®! primers
(FOR 5-CCATGTCAAACGTGCGAGTGT and REV 5'-
CGTTTGACGTCTTCTGAGG) which give a product of




594 bp. Results were visualized by an ethidium bromide
stained agarose gel. Integrity of the RNA was assessed by
PCR for GAPDH.

Western blot analysis

Cells were lysed in a buffer containing 20 mM Tris-Cl pH 8,
137 mM NaCl, 10% glycerol, 1% Triton X-100, 2 mM
EDTA, 1 mM Na3;VO, and protease inhibitors. Lysates were
analysed with the following antibodies: 1 : 200 anti-C-terminal
BRCAI1 (C-20, Santa Cruz), 1:500 anti-N-terminal BRCA1
(Ab-1, Calbiochem) and 1:2500 monoclonal anti-p27<"®!
(Transduction Labs). Equal protein loading was determined
with an antibody against GAPDH (Research Diagnostics).
Results were visualized by Enhanced Chemiluminescence
(Amersham).

Nuclear protein preparation and electrophoretic mobility shift
assays (EMSA)

Double stranded consensus oligonucleotides were end-labeled
with y-*2P-ATP by T4 polynucleotide kinase. Nuclear extracts
were prepared from MCF7 and HCC1937 cells. Ten pg of
nuclear extract was incubated with 20000 c.p.m. of labeled
oligonucleotide. Binding reactions were also carried out in the
presence of a number of antibodies: BRCAl exon 11
(Pharmingen); BRCA1 C-terminal (Zymed); BRCA2 Ab-2
(Calbiochem); CREB1 (C-21, Santa Cruz); CREB2/ATF4 (C-
20, Santa Cruz); Myb (M-19, Santa Cruz); Spl (IC6, Santa
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Cruz). The binding reactions were separated on a 4%
polyacrylamide gel. The gel was dried and the results
visualized by autoradiography.

Immunohistochemistry

MCF7 and HCC1937 were harvested, fixed in 4% formalin
and embedded in paraffin blocks. The sections were analysed
with the following antibodies: monoclonal anti-p27%iP!
(Transduction Labs) and N-terminal BRCA1 (Ab-1, Calbio-
chem). The positive control for these antibodies was an
invasive mammary carcinoma. The negative control for all
antibodies was the detection process without the primary
antibody. Dilutions were as recommended by the manufac-
turers. Results were visualized by horseradish peroxidase and
assessed by light microscopy.
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